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Abstract—This article presents a comprehensive review of
recent advances in intrinsic Cramér-Rao bounds (ICRBs) for
Lie groups (LGs), which play a pivotal role in addressing
estimation problems involving parameters and/or observations
constrained by geometric structures. The review encompasses
both deterministic and Bayesian frameworks, with a detailed
examination of their formulation, derivation, and theoretical
foundations. Furthermore, we underscore significant theoretical
contributions and extend the discussion to practical estimation
challenges, offering insights into their applicability. Emphasis is
placed on methodologies for validating these bounds, providing
a robust framework for performance evaluation across a variety
of estimation problems in engineering and applied sciences.

Index Terms—Intrinsic Cramér-Rao Bounds, Lie Groups.

I. INTRODUCTION

The Cramér-Rao bound (CRB) provides a lower limit on the
precision achievable by any unbiased estimator x̂ of a vector
x that parametrizes a family of p.d.f.s p(z|x), from a sample
of observations z1, . . . , zn. This bound plays a pivotal role
in evaluating the performance of estimation methods within
Euclidean spaces. However, in many practical problems, the
observed data or underlying hidden variables are subject to
nonlinear geometric restrictions, which can be modeled by
constraining parts of the model to manifolds [1], [2]. For
example, problems with parameters in Lie Groups (LGs), -a
smooth manifold with group structure-, appear in numerous
applications across signal processing [3], robotics [4], [5],
and computer vision [5]. Example of notable LGs are the
Special Orthogonal Group SO(3) of rotation matrices in a 3-D
space, the Special Euclidean Group SE(3), which represents
rigid body motions in 3-D space, combining rotations and
translations. For instance, registration problems often involve
transformations between two unaligned images that belong to
the special Euclidean group SE(3) or the similarity group
Sim(3) [6].

In line with the widespread of estimation problems involv-
ing LGs, it becomes essential to establish geometry-aware
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algorithms and lower bounds on intrinsic error measures to
assess their performance. To address the latter, various intrinsic
Cramér-Rao bounds (ICRBs) have been developed, encom-
passing both Bayesian and deterministic (i.e. non-Bayesian)
estimation paradigms. This has led to the introduction of de-
terministic LG-CRBs [7]–[10] and Bayesian LG-CRBs [11]–
[13].

This article provides a detailed review of recent advances
in lower bounds for Lie groups (LGs), with a particular
emphasis on the authors’ contributions to both deterministic
estimation problems and Bayesian frameworks. The discussion
underscores key theoretical developments and explores their
application to practical estimation challenges. The paper is
structured as follows: Section II introduces general concepts
related to LGs. Section III presents the intrinsic LG-Cramér-
Rao bound (LG-CRB) for deterministic parameter estimation
and derives the Slepian-Bangs formula counterpart for LGs.
Section IV focuses on the intrinsic Bayesian bound for LGs.
To demonstrate the utility of these bounds, Section V validates
the derived closed-form expressions for both LG-CRB and
LG-BCRB, through numerical simulations, on two practical
estimation problems: Wahba’s problem on SO(3) and a pose
estimation problem on SE(3).

II. BACKGROUND ON LIE GROUPS

A. Lie Group Definitions

A matrix Lie Group (LG), G ⊂ Rn×n, is a matrix space
that satisfies the properties of both a smooth manifold and a
group. This structure defines a tangent space, known as the
Lie algebra g. The exponential map, ExpG : g → G, and
the logarithmic map, LogG : G → g, establish a relationship
between elements of the LG and its Lie algebra.

Since the Lie algebra g is isomorphic to Rm, two bijections
can be defined: [.]∧ : Rm → g and [.]∨ : g → Rm. Using these,
the exponential and logarithmic mappings can be expressed as:

∀a ∈ Rm, Exp∧
G (a) = ExpG ([a]∧G) , (1)

∀X ∈ G, [LogG (X)]
∨
G = Log∨

G (X) . (2)



For example,
• The Special Orthogonal group SO(3) is a Lie group

of 3D rotation matrices R, such that R⊤R = I and
|R| = 1, where ⊤ denotes the transpose operator and
|.| the matrix determinant. SO(3) describes all possible
rotations of a physical object in 3D space and its Lie
algebra so(3) correspond to the set of skew-symmetric
matrices. More precisely, so(3) = {[w]×|w ∈ R3} where
[.]× denotes the operator which transforms a vector to
a skew-symmetric matrix. Consider R ∈ SO(3) such
as R = Exp∧

SO(3) (w). The exponential and logarithmic
applications are given by the Rodrigues rotation formula,

Exp∧
SO(3) (w) = I3 +

[w]×
∥w∥

sin(∥w∥)

+
[w]2×
∥w∥2

(1− cos(∥w∥)) (3)

Log∨
SO(3) (R) =

∥w∥
[
R−R⊤]∨

2 sin(∥w∥)
(4)

• SE(3) defines the semi-direct product group between
SO(3) and R3. From an application point of view, it
can be used to model the pose of a camera or a robot

SE(3) =

{
X0 =

[
R p
0 1

]
|R ∈ SO(3),p ∈ R3

}
, and

its Lie algebra has the following structure se(3) ={
A =

[
[w] u
0 0

]
|w ∈ R3,u ∈ R3

}
. The exponential

and logarithm operators can be built from Log∨
SO(3) (.)

and Exp∧
SO(3) (.). Indeed, if X0 ∈ SE(3):

X0 =

[
R p
0 1

]
= Exp∧

SE(3) (w) , w ∈ R6 (5)

with w =
[
w⊤

R ,w
⊤
p

]
, ,wR and wp ∈ R3, then:

Log∨
SE(3) (X0) =

[
D(wR)

−1 p
Log∨SO(3) (R)

]
, (6)

and for the exponential mapping:

Exp∧
SE(3) (w) =

[
Exp∧

SO(3) (wR) M(wR)wp

0 1

]
, (7)

where M(wR) and D(wR) are defined in [10].

B. The Baker-Campbell-Hausdorff Formula
The Baker-Campbell-Hausdorff (BCH) formula [14, Theo-

rem 5.5] provides an explicit expression for the composition
of exponential maps:

Log∨G
(
Exp∧

G (a)Exp∧G (b)
)
= BCH(a,b),

which generally satisfies BCH(a,b) ̸= a+ b due to the non-
commutativity of most Lie groups. An approximation of BCH
is given by:

Log∨
G

(
Exp∧

G (a)Exp∧G (b)
)
= b+ ψG(b)a+O(∥a∥2), (8)

where ψG(b)
def
=

+∞∑
n=1

adG(b)
n

n!
is the inverse of the left

Jacobian of G, and adG(·) : Rm → Rm×m is the adjoint
representation of b on g.

C. Estimation on Lie Groups

Let Z ∈ G′ ⊂ Rn×n be observations from a matrix Lie
group G′. These observations are connected to an unknown
parameter X0 ∈ G via the likelihood function p(Z|X0).

To quantify the discrepancy between X̂0 and X0, an intrin-
sic metric is commonly used:

lG

(
X0, X̂0

)
def
= Log∨

G′′

(
X−1

0 X̂0

)
. (9)

This metric leads to two key quantities: the intrinsic bias given
by

bZ|X0

def
= Ep(Z|X0)

(
lG

(
X0, X̂0

))
, (10)

and the Intrinsic Mean Squared Error (LG-MSE):

CZ|X0

def
= Ep(Z|X0)

(
lG

(
X0, X̂0

)
lG

(
X0, X̂0

)⊤)
(11)

It is important to emphasize here that the defined expecta-
tions are according to a group measure. Traditionally, a Haar
measure is used due to its invariance properties.

III. DETERMINISTIC CRAMÉR-RAO BOUNDS ON LGS

Throughout the entire section, Z = {Z1, . . . ,ZN} and z =
{z1, . . . , zN} denote sets of independent observations on G′

and Rp, respectively. The unknown LG parameter X0 on G,
with dimension m, is characterized by the likelihood function
p(Z|X0) or p(z|X0).

A. LG-CRB based on the Barankin Bound on LGs

To define a lower bound, a fundamental property in the
Euclidean case is the strict-sense/uniform unbiasedness. This
property is well-known in the Euclidean framework and al-
lows to theorize the Barankin Bound (BB) [15]. An intrinsic
formulation of this constraint on the LG estimator X̂0, for
standard estimation, is [10],

bZ|X =lG′′ (X0,X) , ∀X ∈ G. (12)

In a similar fashion as the BB in the Euclidean space:
Definition 3.1 (LG-BB on LG): The LG-BB, denoted

PLG-BB, is defined as the minimum value of the intrinsic MSE
(11) under the intrinsic uniform unbiasedness constraint (12),

PLG-BB = min
Ĥ(X0)

CZ|X0

s.t. bZ|X = lG′′ (X0,X) ,∀ X ∈ G. (13)

A lower bound P on the LG-MSE is then derived from a
discretization of the constraint (12) on a set of test points
X(1:L) = {X(1), . . . ,X(L)} ∈ G yielding the inequality,

CZ|X0
⪰ P, P = ∆G R−1

vX0
∆⊤

G. (14)



where ⪰ means that CZ|X0
(X0, X̂0) − P is positive semi-

definite (Löwner ordering [16]), and

∆⊤
G

def
=


lG′′

(
X0,X

(1)
)⊤

...
lG′′

(
X0,X

(L))
)⊤
 , (15)

RvX0
= Ep(Z|X0)

(
vX0

(
Z|X(1:L)

)
vX0

(
Z|X(1:L)

)⊤)
.

with vX0

(
Z|X(1:L)

)
=
[
vX0

(
Z|X(1)

)
, . . . , vX0

(
Z|X(L)

)]⊤
is the vector gathering the likelihood ratios vX0

(
Z|X(l)

)
=

p(Z|X(l))

p(Z|X0)
, ∀l ∈ {1, . . . , L}.

Definition 3.2 (LG-CRB): The inequality (14) is the corner-
stone for deriving the LG-CRB; selecting the test points

X(1:L) = {X0,X0 Exp∧G (i1 δ1) , ..,X0 Exp∧
G (iL−1 δL−1)},

il =

[
0, . . . , 1︸︷︷︸

lth component

. . . , 0
]⊤

∈ Rm. (16)

yields the definition of the LG-CRB, when δl tends to 0,

PLG-CRB = Ep(Z|X0)

(
s(Z|X0)s(Z|X0)

⊤)−1
(17)

where s(Z|X0) =
∂ log p(Z|X0Exp∧G(δ))

∂δ

∣∣∣∣
δ=0

.

Important Remark: In the particular case of unimodular
LGs [17] (such as SO(n) and SE(n)), provided that the
function δ → log p

(
Z,Y|X0Exp∧

G(δ)
)

is sufficiently regular,
the aforementioned expression (17) can be further simplified,

Ep(Z|X0)

(
s(Z|X0) s(Z|X0)

⊤) = −Ep(Z|X0)(
∂2log p(Z|X0 Exp∧

G (δ1) Exp∧
G (δ2))

∂ δ1 ∂ δ2

∣∣∣∣
δ1,δ2=0

)
. (18)

B. LG-CRB for Euclidean observations with Unknown Co-
variance Matrix

Let us consider the following Euclidean model:

p(zi|X0,Σ) = N (zi; fi(X0),Σ), (19)

where fi : G → Rs is a smooth function, and the covariance
matrix Σ ∈ Rs×s is also unknown.

Definition 3.3 (C-LG-CRB for Gaussian Euclidean obser-
vations): For the observations z = {z1, . . . , zN}, the instrinsic
CRB of the parameters (X0,Σ) is lower bounded with IG′

wherein,

IG′ =

[
A 0d×g

0g×d B

]
, (20)

where

A =

N∑
i=1

LR
fi(X0)

⊤
Σ−1 LR

fi(X0)
(21)

LR
fi(X0)

=
∂fi(X0 Exp∧

G (δ)

∂δ

∣∣∣∣
δ=0

(22)

B =
N

2
diag

1, . . . , 1︸ ︷︷ ︸
s

, 2, . . . , 2︸ ︷︷ ︸
s (s−1)

2

 . (23)

C. LG-CRB for LG-Gaussian observations and Slepian-Bangs
formula

The success of the Euclidean CRB is largely attributed
to the Slepian-Bangs formula [18], [19], which provides a
closed-form expression for the Fisher information free of
expectation operators. This formula is particularly significant
in the fundamental scenario where the observations z ∈ RN

are modeled as Gaussian, with a mean vector µ(x0) and a
covariance matrix Σ(x0), both parameterized by the unknown
parameter vector x0 ∈ RP . In this section, we present the
full Slepian-Bangs (F-LG-SP). For further details regarding
the derivation of these formulae, readers can refer to [20]. We
consider now the model following a Concentrated Gaussian
Distribution (CGD):

Zi = Fi(X0)Exp∧G′ (ϵi) , ϵi ∼ N (0,Σ(X0)). (24)

where Fi : G→ G′ is a smooth function.
Theorem 1 (LG-F-SP for a CGD): the LG-F-SP I on X0

for the observation model (24) is given by:

I = I1 + I2 + I⊤
2 + I3 (25)

wherein,

I1 =

N∑
i=1

L⊤
Fi(X0)

ψ⊤
i Σ(X0)

−1ψi LFi(X0) (26)

I2 =

1

2
E
(
L⊤
Fi(X0)

ψ⊤
i Σ−1li

{
l⊤i dΣ

−1
1 li, . . . , l

⊤
i dΣ

−1
S li

})
+

1

2
E
(
L⊤
Fi(X0)

ψ⊤
i Σ−1li

)
dlog|Σ|⊤ (27)

(I3)k,l =
N

2
tr
(
Σ−1dΣk Σ

−1dΣl

)
∀(k, l) ∈ J1, . . . , SK2

(28)

where we make use of the following notations:

LFi(X0) =
∂ lG′(Fi(X0 Exp∧

G (δ)),Zi)

∂δ

∣∣∣∣
δ=0

∈ RS′×S ,

li = lG′ (Fi(X0),Zi) ∈ RS′
(29)

ψi = ψG′(li) ∈ RS′×S′
,

Σ = Σ(X0) ∈ RS′×S′
,

dΣl =
∂Σ(X0 Exp∧

G (δ))

∂δl

∣∣∣∣
δ=0

∈ RS′×S′
∀l ∈ J1, . . . , SK

and dlog|Σ|= ∂log|Σ(X0 Exp∧
G (δ))|

∂δ

∣∣∣∣
δ=0

∈ RS .

D. Closed-form expression on SO(3)

We derive a closed-form expression for the Fisher infor-
mation matrix based on the model assumed in the subsection
III-C, based on the well- known Wabha’s problem [21]. It con-
sists in finding the unknown rotation X0 ∈ SO(3) connecting
two 3D point clouds {zi}Ni=1 and {pi}Ni=1, expressed in two
different frames. This can be modeled as,

zi = X0 pi + ni ∀i ∈ {1, . . . , N} ni ∼ N (0,Q). (30)



In addition to the measurement noise of zi, the points {pi}Ni=1

are also measured with some uncertainties. They can be
modeled by the following Gaussian distribution with mean
pp
i and covariance matrix Qp,

p(pi) = N (pi;p
p
i ,Q

p). (31)

Consequently, the distribution of zi knowing X0 can be
rewritten by using the conditional property and Gaussian
distribution properties,

p(zi|X0) = N (zi;X0p
p
i ,X0 Q

p X⊤
0 +Q). (32)

Consequently, the previous model can be reformulated on the
LG G′ = R3 using the compact CGD form:

Zi = Fi(X0) Exp∧
R3 (ϵi) , ϵi ∼ N (0,Σ(X0)), (33)

with Hi(X0) ≜

[
I X0p

p
i

0 1

]
, Exp∧R3 (ϵi) ≜

[
I ϵi
0 1

]
and

Σ(X0) ≜ X0 Q
p X⊤

0 + Q. We consider the LG observation
defined by equation (33). Furthermore, let us define {Gl}3l=1

a basis of se(3). The Slepian-Bangs formula is given by
∀(k, l) ∈ {1, 2, 3}2:

I = IR + IΣ (34)

(IR)k,l =
N∑
i=1

(pp
i )

⊤
G⊤

k X⊤
0 Σ(X0)

−1X0 Gl p
p
i (35)

(IΣ)k,l =
N

2
tr
(
Σ(X0)

−1
(
X0 Gk Q

p X⊤
0 +X0 Q

p G⊤
k X⊤

0

)
Σ(X0)

−1
(
X0 Gl Q

p X⊤
0 +X0 Q

p G⊤
l X⊤

0

))
(36)

IV. BAYESIAN CRAMÉR-RAO BOUND ON LGS

This section focuses on the Bayesian Cramér-Rao bound on
LGs, referred to as LG-BCRB.

A. Bayesian estimation problem

We address the following scenario: a matrix of unknown
parameters, denoted as X0, is defined on a unimodular Lie
group (LG) G and is estimated from a set of observations
Z = {Z1, . . . ,Zn}, where each Zi (for i = 1, . . . , n) also
belongs to a unimodular LG G′. The set Z takes values in the
product LG G′n and we assume that X0 is a priori distributed
according to a probability density function (pdf) p(X0) and is
related to Z through the likelihood p(Z|X0). Additionally, X̂0

represents a posterior estimator of X0, derived from p(X0|Z).
The Bayesian IMSE is defined by:

E
(
∥Log∨

G

(
X−1

0 X̂0

)
∥2
)
=∫∫

∥Log∨G
(
X−1

0 X̂0

)
∥2p(Z,X0)λS(dZ, dX0)

≜ MSEbay(X̂0,X0) (37)

B. Inequality on the LG-IMSE

Theorem 2: The correlation matrix of the estimation error
satisfies:

MSEbay(X0, X̂0) ⪰

E
(
ψG

(
Log∨

G

(
X−1

0 X̂0

)))
PbayE

(
ψG

(
Log∨

G

(
X−1

0 X̂0

))⊤)
(38)

where ψG(.) is defined by equation (8), and Pbay = I−1, with
I representing the expected value of the Hessian matrix on the
Lie group (LG) of − log p(Z,X0). This matrix is referred to
as the LG-Bayesian information matrix and is expressed as
follows:

I = −E

 ∂2 log p
(
Z,X0 Exp∧

G (ϵ1)Exp∧
G (ϵ2)

)
∂ϵ1∂ϵ2

∣∣∣∣∣
ϵ1,ϵ2=0

 .

(39)

C. Expression of the LG-BCRB

The inequality (38) does not directly provide a lower bound.
This is due to two main factors: first, the intrinsic mean
squared error appears implicitly on the right-hand side of (38);
second, the left Jacobian of G, denoted as ψG(.), lacks a
tractable expression. To address this, we first develop the left
Jacobian according to equation (8). Assuming that p(X0|Z) is
not overly dispersed, we can approximate the left Jacobian of
G at first order, given that non-negligible probability matrices
X0 are close to X̂0 and (38) yields:

E
(

Log∨G
(
X−1

0 X̂0

)
Log∨

G

(
X−1

0 X̂0

)⊤)
⪰

P− 1

2
A+O

(
∥Log∨

G(X
−1
0 X̂0)∥2

)
, (40)

where we define E = E
(
adG(Log∨

G(X
−1
0 X̂0))

)
and

A = PE⊤ +EP. (41)

Taking the trace of (40) provides an inequality for
E
[
∥δ

X̂0
∥2
]
, which corresponds to the Bayesian LG-MSE.

This allows us to derive analytic formulas for the proposed
LG-BCRB for the Lie groups of interest, SO(3) and SE(3).
For simplicity, we will omit the curvature terms highlighted
in (40), as they contribute negligibly.

Theorem 3 (LG-BCRB on SE(3)): The proposed LG-BCRB
on SE(3) is expressed as:

LG-BCRB =

(
−
√
2α

2
+

√
α2

2
+ tr [P]

)2

. (42)

where α = tr
[
P3 P

⊤
3

]
with P3 a sub-matrix resulting from the

decomposition of P in four blocks ∈ R3×3. More precisely,
we define:

P =

[
P1 P2

P3 P4

]
, (43)

where P3 = P⊤
2 while P1 and P4 are symmetric.



D. Closed-form for LG-Gaussian on SE(3)

We formulate the LG-BCRB for an inference problem on
SE(3), where both the likelihood and the prior distribution
are characterized as CGDs ∈ SE(3). Assuming we have a set
of observations Z = {Z1, . . . ,Zn} that take values in SE(3),
these observations are mutually independent and follow the
model

Zi = X0 Exp∧
SE(3) (ei) ∀i ∈ {1, . . . , n}, (44)

where ei ∼ NR6(0,S). In a Bayesian context, we treat X0

as a random variable, with prior information represented by a
distribution defined as:

X0 = Xp Exp∧SE(3) (eM ) with eM ∼ NR6(0,ΣM ),
(45)

where Xp ∈ SE(3). The LG-BCRB depends on the LG-
Bayesian information matrix (39), which in turn relies on
the Hessian matrix of the logarithm of the joint distribution
p(X0,Z), denoted H(X0). Using Bayes’ rule, we can decom-
pose P into two components:

P = − (E (HZ(X0)) + E (HX(X0)))
−1
. (46)

where HZ(X0) and HX0
(X0) represent the Hessian ma-

trices of log p(Z|X0) and log p(X0) with respect to X0,
respectively. By using the properties of the LG-Gaussian,
E (HZ(X0)) and E (HZ(X0)) depends on ψG(.) and perform
an approximation at order 1 of ψG(.) Then P can be expressed
as:

P ≃

nS−1 +
n

4

6∑
j=1

6∑
k=1

(AZ)j,k +Σ−1
M −

1

2

6∑
j=1

6∑
k=1

(AM1 +AM2 −
1

2
AM3)j,k

−1

. (47)

and AM1, AM2, and AM3 are tensors of size 6×6×6×6
defined as follows:

(AM1)j,k = (ΣM )j,k adSE(3)(cj)
⊤ adSE(3)(ck)

⊤ Σ−1
M (48)

(AM2)j,k = (ΣM )j,k Σ
−1
M adSE(3)(cj) adSE(3)(ck) (49)

(AM3)j,k = (ΣM )j,k adSE(3)(cj)
⊤ Σ−1

M adSE(3)(ck). (50)

The LG-BCRB can then be calculated according to (42).
Notably, this bound effectively captures significant terms re-
lated to the geometric structure of SE(3) through the tensors
AZ , AM1, AM2, and AM3.

V. SIMULATION RESULTS

In this section, we demonstrate the applicability of the
developed bounds through two representative examples. First,
we validate the deterministic LG-Cramér-Rao bound (LG-
CRB) using the model presented in Subsection (III-C) on
SO(3). Second, we implement and validate the Bayesian
LG-Bayes Cramér-Rao bound (LG-BCRB) derived in Section
(IV-D), utilizing the models described in Equations (44) and
(45).

A. LG-CRB on SO(3)

In this part, we propose to test and validate the LG-CRB
formula for the complete Slepian-Bangs formula. To achieve
this, we first simulate observations using the formula with
arbitrary values of pp

i , Q = σ2I3, and Qp = σ2
pI3.

Next, we compare the inverse of the LG-F-SP (34), which
yields the LG-F-CRB, with the empirical LG-MSE given

by 1
Nr

∑Nr

nr=1 ∥Log∨
G

(
X−1

0 X̂0

(nr)
)
∥2 where X̂0

(nr)
is the

nr-th realization of the maximum likelihood estimator of
the model (30), minimizing:

∑N
i=1 ∥zi − X0p

p
i ∥2Σ−1(X0

+

N log |Σ(X0)|.This is obtained iteratively using a Gauss-
Newton algorithm. In figures 1a and 1b, we plot both LG-MSE
and LG-CRB with respect to the number of observations for
σ2 = 0.012 and σ2

p = 12, and with respect to varying values
of the standard deviation σ for a fixed N = 5.
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(a) LG-CRB and LG-MSE w.r.t the number of observa-
tions N .
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(b) LG-CRB and LG-MSE w.r.t varying values of the
measurement noise σ2.

We observe the consistency of the LG-CRB with respect to
the LG-MSE, particularly in its asymptotic behavior. Specifi-
cally, in Fig. 1a, the LG-MSE aligns with the LG-F-CRB as
the number of observations increases. Furthermore, in Fig. 1b,
the LG-F-CRB and the LG-MSE align when the measurement
noise variance is low. As the noise variance increases, the LG-
MSE deviates due to bias. This behavior, consistent with the
Euclidean case, validates the LG-CRB.
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(b) Influence of the variance of the rotation components
of ΣM

Now, we propose to validate the LG-BCRB. To do that, we
address a well-known problem in computer vision: estimating
the pose of a camera, defined by a matrix in SE(3). We assume
the availability of a single measurement Z ∈ SE(3) provided
by a Point-n-Perspective (PnP) module [47]. This method geo-
metrically computes the pose with some uncertainty, allowing
the PnP observation to be modeled on the Lie group SE(3)
as (47) where X0 ∈ SE(3) represents the true camera pose,
and Exp∧SE(3) (ϵi) denotes the error on SE(3) due to the PnP
inference. Additionally, we assume that the practitioner has
prior information about the actual position and orientation of
the camera, which can be modeled as (45). To validate the
bound, we examine its behavior as the a priori distributions
of the position and orientation components of ΣM evolve by
assuming assume isotropic variances for these components.
As expected, when the a priori dispersion of the position
components increases significantly, the estimation error tends
to worsen. Figure 2a shows that the bound adjusts accordingly,
following the same trend as the error but remaining slightly
lower. Similarly, the LG-IMSE increases when the variance
of the orientation components becomes large (approaching
10−1, rad2). This trend is also reflected in the bound, as seen

in figure 2b.

VI. CONCLUSION

This work presents recent advancements in the development
of Cramér-Rao bounds for Lie groups (LGs). Specifically,
we have reviewed their formulation within both deterministic
and Bayesian frameworks and established their consistency
through numerical validation on the LGs SO(3) and SE(3).
The findings open several significant avenues for future re-
search. One particularly promising direction is the extension
of these results to encompass LG parameters jointly with
parameters from other manifolds. Another key perspective
involves the development of recursive computation schemes
for Markovian dynamic systems defined on LGs.
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